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A. INTRODUCTION 

It is now generally recognized that symbolic logic or mathematical logic 

represents at the least a development of  techniques and concepts that were 

implicit in classical logic. Hence, it is not surprising that much of  the 

symbolism and operations is clearly correlated with the material already 

presented in the Logic Primer. Accordingly, at the risk of  some repetition, certain considerations 

warrant a restatement for effecting an orderly transition from traditional to modern formulation. 

Arguments 

An argument is construed as a series of  claims such that at least one of  such claims declares a condition 

under which at least one other of  such claims declares a conclusion. The condition claim is called a 

premise. In short, an argument consists of  a series of  propositions in support of  another proposition 

– the conclusion. 

Arguments are made explicit by expressing them as declarative sentences related to one another by 

negation, conjunction, disjunction, implication, or equivalence, and by the use of  punctuational 

devices. Some arguments, although their character does not require the implicative relation, are 

conventionally formulated as implicative, using the "if  ... then" format. The premise sentence is placed 

between the "if" and the "then," whereas the conclusion sentence is placed after the "then." The 

premise as it is expressed in such a formula is called the antecedent; the conclusion as it is expressed 

in such a formula is called the consequent. 

In explicit arguments, truth is construed as a matter of  accurate correlation or application claimed 

between the sentences making up the arguments and whatever those sentences are about. Validity, on 

the other hand, is construed as concerned with the relations claimed as obtaining among those 

sentences making up an argument. One consequence of  this consideration is that strictly speaking 

truth and falsity are treated as semantical (applicational) rather than logical (relational) concepts 

whereas validity and invalidity are logical (relational) rather than semantical (applicational) concepts. 

Logic in use must satisfy both logical and semantical requirements. Such satisfaction is sometimes 

indicated by calling an argument sound. In this way, logical ordering and semantic application combine 



to produce sound arguments; and this outcome is what interests us most from a practical point of  

view. The universe is ordered in conformity with logical relations; it remains a presupposition to treat 

our thought and language that way. Human beings do express themselves more or less clearly in the 

manner presumed by our logical operations. 

Implementation of  explicit arguments in terms of  truth yields the distinction between true declarative 

sentences and false declarative sentences; likewise, in terms of  validity, arguments are said to be valid or 

invalid. Again, by convention, "valid" and "invalid" are labels commonly reserved for the implicative 

formulation of  arguments. An argument which is valid is not invalid; an argument which is invalid is 

not valid. Truth-functional validity requires that in no application (or in no instance) is an argument's 

consequent false and its antecedent true. A sound argument requires that in every application (or in 

every instance) the antecedent being true the consequent of  that antecedent must be true. Should a 

sound argument's claim be conjoined with the claim that the consequent of  the sound argument being 

true the antecedent of  that argument must be true, this conjunction of  claims is called an equivalence, 

expressed in the "if  and only if" format. It is important to note that truth-functional formulations of  

arguments make explicit what is required to satisfy the claim made. Such formulations do not provide 

us with the means to satisfy the requirement. The actual universe is ordered in accordance with our 

logical correlations, including the language used in the statements. 

There are three important characteristics of  symbolic logic that we shall cite and seek to keep in mind 

as we examine statements and their relations. 

o The use of  ideograms or signs to stand directly for concepts. For example, the subtraction 

sign ("-") or the multiplication sign ("x"). 

o The use of  deductive method, which has as one of  its important features the following: from 

a small number of  statements, we can generate a number of  other statements by the 

application of  a number of  rules. 

o The use of  variables, these having a definite range of  significance, as we shall indicate. 

For example, consider the following: 

1. If  Leo is broke then a new car is out of  the question. But, a new car is not out of  the question. 

Therefore, Leo is not broke. 

2. If  this specimen is an insect, it will have only three pairs of  legs. You can see that it does not have 

three pairs of  legs. Therefore, it must not be an insect. 

Examination of  these arguments reveals that there are prominent resemblances that can be made 

explicit if  we substitute for the constituent statements of  the two arguments the letters "p" and "q." 

Substitution results in: 

3. If  p, then q. But not-q. Therefore, not-p. 

The use of  symbols, letters of  the alphabet in this case, functioning as variables enables logicians to 

make clear the structure of  arguments. The use of  symbolized variables also permits logicians to 

formulate general rules for testing the validity of  arguments and enables them to classify arguments 

into types. Finally, the use of  symbols enables the logician to express complicated statements in a 



concise and economical manner and to express concepts that are technically useful for symbolic logical 

operations. 

Logical Forms 

Logicians are interested in relations among variables. This is commonly referred to as an interest in logical 

form. Some of  the most prominent relations traditionally occupying the attention of  logicians are: 

negation, expressed as "not"; disjunction, expressed as "or"; conjunction, expressed as "and"; 

implication expressed as "if  - then ..." and equivalence, expressed as "if  and only if." Variables of  

interest are ambiguous indicators of  whatever data are to be related, for example words, sentences, 

relations, and the like. One common mode of  expressing such variables is by means of  the lowercase 

alphabet letters, such as "p," "q," "r," and so on. Special uses are made of  certain parts of  the alphabet. 

In sum, logical argument consists of  logical form or logical formulation of  relations among variables; 

such logical form is symbolized by means of  conventional notation. Although argument forms can in 

principle be expressed as claims in declarative form, a useful subtype of  such argument forms is the 

implicative form mentioned above. Henceforth, we will preserve this distinction by reserving the label 

declarative for those forms other than the implicative. One of  the logicians' interests has been that of  

developing methods for testing the validity of  the implicative argument form. 

B. THE SENTENTIAL CALCULUS 

Sentential calculus (sometimes called the propositional calculus) plays a fundamental role in symbolic 

logic. Generally, logicians take all sentences that are either true or false but not both as the province 

to which this calculus applies. For example, the following are sentences of  the declarative type: 

1. Plato was not a musician. 

2. Plato was a philosopher, or he was not a student of  Socrates. 

3. Plato was a philosopher, and he knew Socrates. 

The following are sentences of  the implicative type: 

4. If  Plato was a philosopher, then he knew Socrates. 

5. Plato was a student of  Socrates only if  Socrates was Plato's teacher. 

The following is a sentence of  equivalence type that consists of  two sentences of  implicative type 

conjoined to form a sentence of  declarative type. 

6. Plato was a student of  Socrates if  and only if  Socrates was Plato's teacher. 

These and other sentences, compounded and negated to various degrees of  complexity, constitute the 

subject matter to which the sentential calculus of  symbolic logic is applied. 

Sentences of  the types illustrated above are said to have a truth-functional formulation in that the 

truth-value of  the sentence (its being true or false but not both) as formulated is uniquely determined 

by the truth-value of  the simplest declarative parts of  the formulation. While, according to the 

convention adopted, "valid or invalid" (but not both) rather than "true or false" (but not both) are 



applicable to the illustrative sentences at 4 and 5 above, the validity status of  sentences of  such type 

is also uniquely determined by the truth status of  the antecedent declarative part and the truth status 

of  the consequent declarative part. 

To illustrate such truth-functional formulation, sentence 3 above can be symbolized as "p and q." As 

a condition for the truth of  "p and q," one which is not contrary to ordinary-language use, we stipulate 

that "p and q" is true only under one set of  conditions, namely when both the sentence for which "p" 

is substituted and the sentence for which "q" is substituted are true; under any other truth-value 

condition "p and q" will be false. Such dependence of  truth-value can be represented by a truth table. 

Plato was a philosopher. 
He knew 
Socrates. 

Plato was a philosopher, 
and he knew Socrates. 

p q p and q 

true true true 

true false false 

false true false 

false false false 

Any statement can be represented in a truth table by making it part of  an argument in which the 

statement and its denial are treated as two propositions. By taking "Plato was a musician" as the 

simplest declarative part of  the sentence at 1, above, its denial can be formulated as "not-p"; the truth 

table for this formulation would be: 

Plato was a musician. Plato was not a musician. 

p not-p 

true false 

false true 

Before constructing truth tables to represent other types of  sentences, it will be convenient to 

symbolize the relations as well as the sentences related. 

By a common convention, sentences will be symbolized by means of  the middle lowercase letters of  

the alphabet, that is, "p," "q," "r," "s," up to but not including "v," "w," "x," "y," and "z." Lowercase 

letters occurring in the alphabet prior to "p" and after "u" are often used for other logic purposes not 

covered here. The letters "p" through "u" are referred to as sentential variables. 

The relations expressed by the words "not," "and," "or," "if  … then …," "if  and only if" and 

"therefore" are symbolized as follows: 



" ~ " for "not" 

" . " for "and" 

" v " for " or "* 

"  " for "if  then…" 

"  " for "if  and only if" 

"  " for "therefore" 

(*Used in the sense of  "at least one, possibly but not necessarily both" of  two variables. The "or" is 

used in this sense; although "or" has a more restrictive sense of  "at least one but not both" or 'either 

but not both".) 

Such symbols are referred to as logical connectives. As a consequence of  full symbolization, the 

sentence, for example, "If  Plato was not a musician then Plato was a philosopher" would be notated 

as "p  q". It is to be noted that such symbolization makes explicit the logical form of  the sentence 

without restricting the logical form to that particular sentence. Obviously, there is an indeterminate 

number of  sentences occurring in the same logical form only one of  which was selected here for 

illustrative purposes. Another convenience we will adopt will be to notate "true" as "T," "false" as "F." 

Thus, "T" and "F" indicate assumed truth-values. 

Before we consider some of  the basic truth tables of  the sentential calculus, it is necessary to provide 

symbolic notation for logical punctuation in order to indicate the scope of  the logical connectives. 

Parentheses, brackets, and braces are used in symbolic notation to avoid ambiguity. For example, the 

following would be quite ambiguous without punctuation: 

~ p  q v r  s  ~ t 

However, we avoid ambiguity by clustering or gathering the variables in a certain way; for example, 

one such case:  

 [(p  q) v (r  s)]  ~ t 

Of  course, these variables and logical connectives could be punctuated differently. Accordingly, there 

is need for a couple of  rules to guide punctuational procedure: 

Rule I:  The "~" applies to the largest punctuational segment immediately to the right. This 

punctuational segment may be a single variable as in "~ p", a complex within parentheses such as in 

"~ (p  q)," a complex within brackets as in " [(p  q) v r]," or a complex within braces as in " {[(p  

q) v r]  s}." 

Rule II: Logical connectives other than "~" apply to the largest punctuational segments immediately 

flanking such connectives. Either of  such segments may be a simple variable or a complex of  whatever 



internal makeup. 

Consider the following simple cases: 

1. ~ p  q 

2.  (p  q) 

3. (p v q)  (r  s) 

4. p  [(q  r) v (s  t)] 

In 1, the "  " extends to "p". 

In 2, the scope of  "  " extends to the entire complex segment enclosed by the parentheses, that is, to 

"(p  q)". 

In 3, the scope of  " v" and "  " extends to the variable segments that flank them, that is to " p" and " 

q " and to " r " and " s ", respectively. The scope of  "  " extends to the segments which flank it, that 

is to "(p v q)" and "(r  s)". In 3, the logical connective with the largest scope is "  ". 

In 4, the "  " is the logical connective with the largest scope. The scope of  " v " extends over the 

complex segments that flank it. The "  " extends to the variables that flank it. 

We are now in a position to consider some basic truth tables of  the sentential calculus. Horizontal 

sequences of  "T's" and "F's" beneath the variables will be referred to as rows; vertical sequences will 

be referred to as columns. 

The Contradictory Function: 

p  p 

T F 

F T 

The Conjunctive Function: 

p q p  q 

T T T 

T F F 

F T F 

F F F 

 



The Disjunctive Function: 

p q p v q 

T T T 

T F T 

F T T 

F F F 

The inclusive sense of  "or" is represented above. The "(p v q)" in this sense means at least one, not 

requiring but permitting both to be true. The exclusive sense can be treated as a special case of  the 

inclusive sense of  "or", i.e., the sense wherein it is not the case that both are true. 

The Implicative Function: 

p q p  q 

T T T 

T F F 

F T T 

F F T 

It is not difficult to find idiomatic uses of  implicative statements that correspond to the first and last 

rows. Nevertheless, notwithstanding examples showing a correspondence between idiomatic uses of  

implicatives and the truth-functional representation of  the "if-then" relations above, there are some 

difficulties with the truth-table interpretation for the logical connective "  ". These "difficulties" are 

usually referred to in the literature as the "paradox of  material implication." This "paradox" can be 

expressed in two ways: 

i. The truth table for the implicative function shows that any true statement is implied by any 

true statement as well as any false statement (first and third rows). 

ii. The truth table further shows that any false statement implies any true statement as well as 

any false statement (third and fourth rows). 

These "paradoxes" are avoided by clarity of  claims made. The "paradox of  material implication" is 

dispelled by the clear understanding that the "if-then" (the "  ") relation, as some logicians use it, is 



not intended to restrict what can be meant, but solely to restrict truth-functional relations among 

whatever is meant by the data related. While any factual meaning that is shared by the statements 

related is not ruled out by the "  ", such factual meaning is not required for the "  " relation to 

function as a logical relation between statements that are either true or false. Logical implication in 

this sense is frequently distinguished from material implication, in that the former holds for a meaning 

relation dependent in part upon the factual status of  the sentences related, whereas the latter holds 

for a truth-functional relation not dependent upon the factual status of  the sentences related. Since 

we are concerned essentially with the truth-functional operation of  "  ", logical implication will be 

interpreted in terms of  a material-implication operation. Again, whatever we do mean by our 

sentences, we will develop a truth-functional means of  ordering our sentences about that meaning.* 

Accordingly, we adopt (assume) the terminology of  "logical implication" (and "logical equivalence") 

in the sense of  material implication (and material equivalence). Validity, truth status, and meaning, 

while related, are distinct; to ignore the distinction is to confuse the three and the result is a 

"paradox."(See References) 

As an aid to symbolization correlated with implicative relations as they occur in ordinary language, 

some ordinary-language cues or indicator words are helpful: 

if  p then q p  q 

p only if  q p  q 

p thus q p  q 

p therefore q p  q 

p hence q p  q 

p unless q  p  q 

p if  q q  p 

p since q q  p 

p because q q  p 

p for q q  p 



The Equivalence Function: 

p q p  q ( p  q)  ( q  p) 

T T T T 

T F F F 

F T F F 

F F T T 

From the above, two things are clear: 

(i) " p  q " is true when both "p" and "q" have the same truth value (first and last rows), and 

(ii) "p  q " and " (p  q)  (q  p) " have identical truth tables. 

Accordingly, "p q " is logically equivalent to " (p  q)  (q  p) ". These can be interchanged; i.e., 

one can be substituted for the other. (The importance of  this kind of  substitution will become clear 

in the section dealing with formal proofs.) 

Finally, "  " is sometimes called a "triple bar" or a "double horseshoe" and is an interpretation of  the 

phrase "if  and only if." 

C. INTERDEFINABILITY (RELATIONS BETWEEN TRUTH FUNCTIONS) 

In the last section, it was shown that "p  q" and "(p  q)  (q  p)" have identical truth tables. This 

identity is possible since the "  " can be defined in terms of  two other logical connectives, the "  " 

and "  ". It is possible also to define the "  " in terms of  the "  " and the "  ". The "  " is taken as 

a primitive notation, that is, as one which is not defined in terms of  other logical connectives. What 

follows shows interdefinability for the "  " in terms of  the "  " and "  ", and in terms of  the "  " 

and " v ". (Top row displays the sentential variables and logical expressions; the Bottom row consists 

of  column number for reference.) 

p q p  q (p  q) p v q 

T T T T T 

T F F F F 

F T T T T 

F F T T T 



(i) (ii) (iii) (iv) (v) 

Columns (iii), (iv), and (v) are identical. Consequently, the complex truth functions are said to be 

logically equivalent and, therefore, substitutable one for another. Logically equivalent truth functions 

connected by the "  " yield a column of  "T's" under the "  " in a truth table. 

D. TRUTH TABLE METHOD TESTING VALIDITY OF ARGUMENTS 

We are now in a position to construct and show the application of  truth tables in testing the validity 

of  arguments. It is important to keep in mind that in a particular argument the value of  a variable 

remains constant. Further, the expression for which a particular variable has been substituted remains 

constant throughout all rows of  a truth table. 

Consider the following argument: 

1. If  Andy is a bachelor, then he must read Plato. 

2. But he does not read Plato. 

Therefore, Andy is not a bachelor. 

Formulation of  this argument as implicative using the "if-then ..." format yields: 

[(p  q)  q]   p 

This truth function has two variables, namely, " p " and " q ". The number of  rows in the truth table 

will be four. A handy formula for determining the number of  rows in constructing any truth table is 

R = 2n, where "R" is the number of  rows and "n" is the number of  different variables in the truth 

function. 

 p q [( p  q )   q ]   p 

1 T T T F F T F 

2 T F F F T T F 

3 F T T F F T T 

4 F F T T T T T 

 (i) (ii) (iii) (iv) (v) (vi) (vii) 

From columns (i) and (ii), we obtain (iii), recalling the truth-functional formulation for the "  " 

(Section B, the Sentential Calculus). 

From (ii), we calculate the truth-values in column (v) based on the truth-functional formation for the 

"  ". 

From (iii) and (v), we obtain the truth-values in column (iv), similarly based on the truth-functional 

formulation for the "  ". 



From (i), we determine the truth-values in (vii). Finally, from (iv) and (vii), we calculate the truth-values 

under the "  " in column (vi); this connective has the largest scope. 

A truth function which yields all truth values as "true" under the connective with the largest scope (as 

is the case in the example above) is recognized as an always-true truth function. An always-true truth 

function is called a tautology. If  a tautology is correlated with an implicative argument, then the 

argument is valid as are all other arguments having the same logical form.  

A truth function which yields some truth values as "true" and others as "false" under the logical 

connective with the largest scope in a truth table is known as a contingent truth function. If  a 

contingent truth function is correlated with implicative argument, that argument and all others, having 

the same logical form are recognized as invalid. 

To illustrate, consider the following: 

1. If  Leo is a bachelor, then he reads Plato. 

2. But everyone knows that Leo is not a bachelor. 

Therefore, he does not read Plato. 

Truth-functional formulation of  the above argument yields: 

[(p  q)   p]   q 

Constructing a truth table, we note that it will consist of  four rows. 

 p q [( p  q )   p    q 

1 T T T F F T F 

2 T F F F F T T 

3 F T T T T F F 

4 F F T T T T T 

 (i) (ii) (iii) (iv) (v) (vi) (vii) 

The truth-value "F" under the "  " with the largest scope (vi) in the above truth table (row 3) show 

that the truth function is not a tautology since in some cases it is true (rows 1, 2, and 4) and in one 

case false (row 3). Therefore, the truth function is a contingency. The implicative argument which is 

correlated with the contingent truth function is invalid as are all arguments having the same logical 

form. 

The two preceding arguments are examples of  the implicative type of  argument mentioned in the 

introductory section. Keep in mind that within each row of  a truth table, the truth-value of  a particular 

variable remains constant. Further, as mentioned before, the expression for which a particular variable 

has been substituted remains constant throughout all rows of  a truth table for a given argument. 

Previously, implicative arguments were distinguished from one other type of  argument – the 



declarative type. The following is a truth-functional formulation of  a contradictory declarative type; 

hence, neither the label "valid" nor the label "invalid" applies. However, for every contradictory 

declarative argument, there is an invalid implicative argument. 

(p  p) 

p p (p   p) 

T F F 

F T F 

The negation of  a contradictory truth function yields a tautologous truth function; negating a 

tautologous truth function yields a contradictory truth function. Valid arguments expressed (that is, 

formulated) as implicative truth functions yield tautologies. Invalid arguments yield either contingent 

or contradictory truth functions, never tautologies. 

E. SHORTHAND TECHNIQUE TESTING VALIDITY OF ARGUMENTS 

The truth table method for testing the validity of  arguments is admittedly a mechanical method. Its 

construction and application become cumbersome with extended arguments. For example, an 

argument with six different sentential variables requires 26 or 64 rows in the truth table. 

Fortunately, there is a shorthand technique for testing the validity of  an argument. This method 

attempts to prove invalidity. Consider the following argument form: 

p  q 

q 

____ 

 p 

If  it is possible to assign truth values to the variables in the above argument form such that the 

premises are true and the conclusion false, then the argument is invalid; if  such assignment cannot be 

made, then the argument form is valid. If  the argument form is valid and the conclusion false, then at 

least one of  the premises will be, must be, false. 

Step 1: Assign the truth-value "F" to the conclusion variable. 

p  q 

q 

____ 

 p F 

Step 2: Assign the truth-value "T" to the premise variable "q". (Assigning the truth-value "F" to "q" 

at this point defeats the shorthand technique, since the application of  this method is an attempt to 



prove invalidity.) 

p  q 

q T 

_______ 

 p F 

Step 3: Carry out the same assignment of  truth values to the variables in the premise " p  q ". 

F     T 

p  q T 

q T 

_______ 

 p F 

It has been shown above that it is possible to assign truth values to the variables "p" and "q" of  the 

argument form such that the premises are true and the conclusion false. (One row in a truth-table 

analysis would show and "F" under the "  " with the largest scope). Therefore, the argument is not 

valid; if  not valid, then invalid. This form of  invalid argument has been traditionally called the fallacy 

of  affirming the consequent. 

Consider the following argument form (affirming the antecedent): 

T      F 

p  q F 

p T 

________ 

 q F 

It is not possible to assign truth values to the conclusion and premise variables of  the above argument 

form such that the premises are true and the conclusion false. Therefore, the argument is not invalid. 

If  not invalid, then valid. This valid argument form has been labeled modus ponens. 

One other well-known fallacy is known as the fallacy of  denying the antecedent. Consider, for example, 

the following: 

F     F 

p  q T 

F (p) 

 p T 



________ 

 q F 

Note however, denying the consequent variable "q," to detach the denial of  the antecedent variable 

"p" of  "p  q" as the conclusion variable " p" is not a fallacy, as shown in what follows.. 

T     F 

p  q F 

F 

 q T 

________ 

     T 

 p F 

This valid argument form is recognized as modus tollens. 

In the next section, we shall give a list of  some valid argument forms (sometimes called valid-inference 

rules). It should be obvious that a valid argument form formulated as a truth function will always yield 

a tautology. 

In sum, the shorthand technique represents a relatively easy method of  checking for validity. By use 

of  this technique cumbersome construction of  full truth tables can be avoided. 

In connection with the topics of  validity, truth-value, and material implication, a note on a common 

bit of  terminology is in order. For a valid argument, it is sufficient that the antecedent be true for the 

consequent to be materially implied as true. Moreover, for a valid argument it is necessary that the 

consequent be true for that consequent to be materially implied by a true antecedent. Accordingly, the 

antecedent of  the material-implication relation is often referred to as the sufficient condition. The 

consequent is then referred to as the necessary condition. The labels "sufficient" and "necessary" are 

undoubtedly used in other senses, but it is enough that the student of  elementary logic to understand 

how the two words are used in talking about logical operations as exhibited herein.  

F. VALID-INFERENCE RULES 

1. Detachment Rules 

Elementary Detachment Rules 

1. (p  q) , p  q modus ponens (MP) 

2. p , q  (p  q) conjunction (C) 

3. (p  q)  p simplification (S) 

4. p ( p v q) addition (A) 

5. (p  q) , (q  r)  p  r hypothetical syllogism (HS) 



Derived Detachment Rules 

6. (p  q) ,  q  p modus tollens (MT) 

7. (p v q) ,  p q 
disjunctive 
syllogism (DS) 

8. (p  q)  (r  s) , (p v r) (q v s) 
constructive 
dilemma (CD) 

9 
(p  q)  (r  s), 

 (q v s) 

 

( p v r ) 

destructive dilemma 
(DD) 

2. Replacement Rules 

Elementary Replacement Rules 

10. (p  q)  (~ p v q ) 
material implication 

(MI) 

11. 
(p  q)  [( p  q ) v ( p  q)] 

(p  q)  [( p q )  (q  p)] 

material equivalence 

(ME) 

12. 
p  (p  p) 

p  (p v p) 
tautology (T) 

13. 
(p  q )  (q  p ) 

(p v q )  (q v p ) 
commutation (CN) 

14. p    p 
double negation 

(DN) 

15. 
[(p  (q  r)]  [(p  q)  r ] 

[(p v (q v r)]  [(p v q) v r ] 
association (AN) 
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[(p v ( q  r)]  [( p v q)  ( p v r )] 

[(p  ( q vr)]  [( p  q) v ( p  r )] 
distribution (DTN) 

Derived Replacement Rules 

17. [(p  q)  r]  [p  (q  r )] exportation (EN) 

18. 
 (p  q )  ( p v  q) 

 (p v q )  ( p   q) 
De Morgan's theorem (DeM) 



19. (p  q )  ( q   p) transposition (TN) 

Rules 1 through 9 above, the detachment rules are classified into elementary rules (1 through 5) and 

derived rules (6 through 9). These detachment rules apply solely to whole lines in a formal proof, as 

will be shown in the section dealing with formal proofs. 

The replacement rules (10 through 19) apply to whole lines or to portions of  whole lines in a formal 

proof. Rules 10 through 16 are elementary; rules 17 through 19 are derived. These replacement rules 

allow for substitution of  logically equivalent formulations wherever they occur in a formal proof. 

G. FORMAL PROOFS  

The truth-table method and the shorthand technique are decision procedures that can be applied to 

truth-functional formulations to determine whether or not any given truth function is a tautology. 

There is another method by which it can be demonstrated that a given conclusion follows from certain 

premises. This is the method of  deriving a conclusion from premises by making use of  valid-inference 

rules. This derivation, however, is not a decision procedure. It cannot tell us whether any given 

implicative argument is valid. It does, however, enable us to show how a certain truth-functional 

expression (i.e., the conclusion of  an argument) is derivable from another truth-functional expression 

(i.e., the premise of  that argument) just in case the two truth-functional expressions are tautologously 

related (or, the argument valid). As such, formal proof  procedures provide a useful method for 

exhibiting the validity status of  arguments. 

In constructing a formal proof, each step in the derivation is justified in terms of  a valid inference 

rule. For example, consider the following argument: 

1. If  Leo is smart, he will not prosecute Andy. 

2. If  he does not prosecute Andy, then Judy will lose face. 

3. If  Judy loses face, then Nancy will be unhappy. 

4. Therefore, if  Leo is smart, Nancy will be unhappy. 

Now, let p = Leo is smart; q = he will prosecute Andy; r = Judy will lose face; s = Nancy will be 

unhappy. Truth-functional formulation of  the above then results in the following argument form: 

1. p   q 

2.  q  r 

3. r  s 

4.  p  s 

It is worth noting that every valid argument has a proof  whether we manage to discover a proof, or 

not; however, there is no proof  for an invalid argument. Having found that the above argument form 

is valid, we proceed to derive the conclusion from the given premises by constructing a formal proof  

showing a step-by-step justification using valid-inference rules to justify each step in the following 



way: 

l. p  ~q 

2. ~q  r 

3. r  s   p  s 

4. p  r  (from 1, 2 by HS) 

5. p  s  (from 4, 3 by HS) 

The symbol "" introduces that which is to be proved. As a matter of  convention, it is placed to the 

right of  the last premise given. 

Consider another argument form: 

1.  p v q 

2. ~ (q   r) 

3. r  s 

4.  s 

5.  p 

Again, the argument form is valid and we can construct a formal proof  showing a step-by-step 

justification in terms of  valid-inference rules. 

1.  p v q  

2.  (q   r) 

3. r  s 

4.  s     p 

5. p  q (from 1 by MI) 

6. ~q v   r (from 2 by DeM) 

7. ~q v r (from 6 by DN) 

8. q  r  (from 7 by MI) 

9. p  r  (from 5, 8 by HS) 

10. p  s (from 9, 3 by HS) 

11. ~ p  (from 10, 4 by MT) 

We have so far examined one method for ascertaining the validity of  arguments, namely, the truth-

table method discussed in Section D, and one method of  demonstrating the validity of  arguments, 



namely, the formal-proof  method discussed above. Just as the shorthand technique (Section E) 

represents an economy upon the full truth-table method, two variants of  the formal proof  method 

frequently (although not always) represent an economy in demonstrative proof. These are called 

conditional proof  and indirect proof. Since the label reductio ad absurdum is applied sometimes to the 

shorthand truth-table technique and sometimes to the indirect method of  proof, it is in the interest 

of  clarity to distinguish the two senses. 

H. THE CONDITIONAL-PROOF METHOD 

The conditional-proof  method and the formal-proof  method are similar in that both require step-by-

step justification. The conditional-proof  method, while easier to use in many cases, is restricted to 

arguments with implicative conclusions and their logical equivalents. 

For example, if  we let "B" stand for a premise set, the conditional-proof  method can be used 

whenever the conclusion is of  the following logical form: "p  q", or the logically equivalent "~ p v 

q" or "~(p  ~q)". When conducting conditional proof  the conclusion to be proved should be 

formulated in the "  " notation prior to making the conditional assumption step. 

If  "B" is the premise set, and "p  q" is the conclusion, we can formulate this argument in the 

following way: 

B  (p  q) 

But "B  (p q)" is logically equivalent to "(B  p)  q" as a truth table analysis will show. This 

equivalence means that if  both "B" and "p" conjoined imply "q", then "B" alone implies "p  q." This 

logical equivalence is known as exportation, shown in the list under valid inference rules. 

In all such arguments, then, the antecedent in the implicative conclusion, "p" in this case, is assumed 

as part of  the premise set. We can prove that "q," the consequent in the implicative conclusion, follows 

from the premise set and " p " conjoined. 

Consider this argument form: 

l. (p  q)  s 

__________ 

  s   q 

Constructing a formal proof  results in the following derivation:  

1. (p  q)  s      s  q 

2. ~s   (p  q)  (1, TN) 

3. ~s   (  p v q)   (2, MI) 

4 ~s  (  p   q)   (3, DeM) 

5. ~s  (p  ~ q)  (4, DN) 



6. s v (p   q)    (5, MI) 

7. (s v p)  (s v q)  (6, DTN) 

8. (s v q)  (s v p)   (7, CN) 

9. s v  q   (8, S) 

10.  s   q    (9, MI) 

A conditional proof  proceeds in the same fashion as the proof  above. There are, however, some 

differences. Indentation, for example, of  steps 2 through 7 in the following proof  indicates the steps 

in which the conditional proof  is used. Lines 1 and 8 are not indented since these lines are not within 

the scope of  the assumption introduced in line 2. Indentation within indentation is possible whenever 

the conclusion has an implicative as the antecedent or consequent of  the main implicative. In such 

cases, one assumption is introduced within the other assumption in the conditional proof. In what 

follows, we are considering only one such assumption. 

1. (p  q)  s       s   q 

 2. ~ s   Assump.    q 

 3  (p  q)  (1, 2 MT)  

 4.  (p v q)  (3, MI) 

 5. ~~p  ~q   (4, DeM) 

 6. ~q   ~p   (5, CN) 

 7. ~q   (6, S) 

8.  s   q    (2 through 7 by CP) 

It should be obvious that the formal proof  is longer and perhaps more difficult to construct than the 

conditional proof. 

I. THE INDIRECT-PROOF METHOD 

By application of  the inference rules for addition, material implication, and exportation in that order 

to the conclusion of  any argument, a warrant is provided for including in the premise set the negation 

of  the initial conclusion. This operation in simplest form can be shown as follows: 

Given: "p  q". Then such by Addition yields "p  (q v q)". 

Given: "p  (q v q)". Then such by Material Implication of  "(q v q)" yields "p  (~ q  q)". 

Given: "p  ( q  q)". Then such yields "(p  ~q)  q" by Exportation. 

In the proof  procedure the additional premise is used to derive contradictory premises. Next, the 

conclusion to be proved is added to the positive member of  the contradictory pair of  premises. Then 



the result of  the second operation is conjoined with the negative member of  the contradictory pair to 

yield by disjunctive syllogism the conclusion to be proved. The indentation device used in conditional 

proof  is adopted for indirect proof  as well. 

Consider the following example: 

1. p v (q  r) 

2. q   r     p 

 3.  p  Assuming.   p 

 4. q  r  (1, 3 DS) 

 5. q  (2, S) 

 6. r  (4, 5 MP) 

 7. ~r  q (2, CN) 

 8.  r  (7, S) 

 9. r v p  (6, A) 

10. p    (9, 8 DS) 

Note that lines 6 and 8 form a contradictory pair (r   r); at line 9 the conclusion is added to the 

positive member of  that pair; then by application of  DS to lines 9 and 8 the conclusion is derived. 

Note. The indirect method may be used within a conditional proof  (CP) as exemplified by the 

following: 

1. (p  q) r 

2. (q  r)  s      p  s 

 3. p    Assuming   s 

  4.  s   Assuming   s 

  5. p  (q  r)  (1 EN) 

  6. q  r   (5, 3 MP) 

  7.  (q  r)  (2, 4 MT) 

  8. (q  r) v s  (6, A) 

 9. s    (8, 7 DS) 

10. p  s    (3 through 9, CP) 

Note that in such case indentation for indirect-proof  steps occurs within the indentation for 

conditional-proof  steps. Lines 6 and 7 form a contradictory pair: (q r) and  (q  r). Further, this 



proof  illustrates the point that conditional-proof  or indirect-proof  method does not always serve 

economy, for the proof  of  this argument conducted by formal method is shorter than that provided 

by either conditional or indirect method. 

Witness the following: 

1. (p  q)  r 

2. (q  r)  s    (p  s) 

3. p  (q  r)  (1, EN) 

4. p  s  (3, 2 HS) 

Note: In modern as in classical logic, quantitative and qualitative (in the sense of  affirmation and 

negation) considerations must not be neglected. The procedures for handling these distinctions in 

connection with the symbolic techniques presented are material for additional material. 

SUMMARY 

According to Gordon Clark, in a note of  In Defense of  Theology (pp. 49-51) observes that 

contemporary logicians reject A(ab) E(cb) < O(ca) as invalid, reducing the number of  valid syllogisms 

from 24 to 15. He explains first how this rejection came about, then why it is not necessary. Although 

the argument for the reduction of  syllogisms has no logical flaw, Clark finds it is based on a "great 

blunder." 

"I now assert that Russell made a great blunder, not in his deductions, but in his definition of  the 

term All.  Remember he explained All a is b  as  a is included in b. However obvious Russell's 

definition seems, it is not a correct analysis of  the English word All. … Contemporary logic is based 

on a misunderstanding of  the English word all." (Clark, Reference 1, p. 51) 

Clark, in Logic (p. 81f), provides a definition of  all that, though awkward and not free from all 

difficulties, is in accord with ordinary English's all. It preserves subalternation and restores valid 

syllogisms to 24. 

"Russell's definition of  All is faulty, and his completely valid deductions from this faulty definition 

have nothing to do with all, some, or subalternation." (Clark, Reference 2. p. 83) 

_____ 
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